DAYTON AIRCRAFT CABIN FIRE MODEL

Volume III - Computer Program User's Guide

Peter M. Kahut University of Dayton Research Institute Dayton, Ohio 45469

June 1976 Final Report

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

-FSS 001506R

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FAA-RD-76-120, III		
4. Title and Subtitle		5. Report Date
Dayton Aircraft Cabin Fir	June 1976	
Volume III - Computer Pr	6. Performing Organization Code	
7	8. Performing Organization Report No.	
7. Author's) Peter M. Kahut		
9. Performing Organization Name and Addres	10. Work Unit No. (TRAIS)	
University of Dayton Research	arch institute	
300 College Park Avenue		11. Contract or Grant No.
Dayton, Ohio 45469		FA74WA-3532
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Final Report
Department of Transporta		July 1974 - March 1976
Federal Aviation Administ	ration	
Systems Research and Dev	velopment Service	14. Sponsoring Agency Code
Washington, D.C. 20590	-	
15. Supplementary Notes		

16. Abstract

A basic mathematical model and computer simulation program have been developed to assess the smoke and toxic gas emissions resulting from the burning of cabin interior materials of a wide-body transport aircraft in a full-scale fire. The simulation is based on laboratory test data on the cabin materials. This report is a guide for use of the computer simulation program which includes instructions for input data preparation, sample input and output, basic definitions concerning the simulation program and mathematical model, and a brief description of the program structure. This report consists of three volumes: Volume I is entitled "Basic Mathematical Model" and Volume II is entitled "Laboratory Test Program".

17. Key Words	18. Distribution Statement			
aircraft fire safety, aricraf	Document is ava	Document is available to the public		
materials, smoke and toxic	through the National Technical Infor-			
craft cabin fires, wide-body	mation Service, Springfield, Virginia			
room fire, mathematical me	22151			
computer simulation, fire r				
19. Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price
UNCLASSIFIED	UNCLASS	SIFIED	52	

METRIC CONVERSION FACTORS

CENCTH	FENGTH National by To Find Symbol Symb	Approximate Con	Approximate Conversions to Metric Measures	Measures		7 7 7		Approximate Conversions from Metric Measures	rsions from Metr	c Measures	4
FEMCTH	Controllers	You Know	Multiply by	To Find	Svmbol	2 1	Symbol	When You Know	Multiply by	To Find	Symbol
FROTH	Continuents								LENGTH		
FAREIN	Continuences					ACCION ACCIONAL ACCIO					
1.5 Continuetars	Con		LENGTH				mm .	millimeters	0.04	inches	Ξ :
1.5 Continenters 1.1 C	Color Colo					ST.	CH	centimeters	9.7	inches	€ #
1,6 Millometers Millomet	Color Colo	sehoui	*2.5	centimeters	cm		E E	meters	2.5	yards	PΑ
1.5 meters m meters m m meters m m meters m m meters m	Mass	feet	30	centimeters	CIE		Ē	Kilometers	9.0	miles	Ē
1.5 Kilometers Min	March Marc	yards	6.0	meters	E	The second secon					
AREA	MASS Control	miles	1.6	kilometers	km	-					
AREA Square recting the square meters Color Square recting the square meters Color Color Square meters Color	Square meters Cm2 Square meters 1.2 Square miches					C1		namo (parento)	AKEA	,	
MASS (weight) Mass (weight	Square meters 1.2 Square meters 1.3	Transmacritings	AREA			31	2			adadi oxenso	, n
MASS (veright)	MASS (weight) 2.5 acres 1.5		i.			Parameter Co.	E Z	square centimeters	1.10	square vards	vd ²
MASS weight MASS	NASS (weight) 1.5	square inches	6.5	square centimeters		Account Balance	111	square incited	7.0	square miles	mi ²
MASS (weight)	MASS (weight) Mass (weight	square feet	60.0	square meters	= ^Z E	The second secon	H KI	hectares (10,000 m ²		acres	
MASS (weight) MASS (weight	MASS (weight)	square yards	0.0	square kilometers	km ²	The second second	2				
MASS (weight)	MASS (weight)	square mires	2.0	hectares	ha	A COLUMN TO THE PERSON OF THE					
MASS (weight)	1	62128	•			manufacture in the state of the			MASS (weight)		
1	Figure F	e	MASS (weight)			design to the state of the stat		Ontification	esses and to the enhancement and another or		
VOLUME	Head of the control		C				6	grams	0.035	ounces	20
VOLUME	TEMPERATURE (exact) Temperature Color	onuces	87	grams	50 2	The second secon	kg	kilograms	7.7	pourius chort tons	2
VOLUME	Miles Mile	spunod	0.43	toppes	ñ	COLUMN CO	-	tonnes (1000 kg)	-	200	
VOLUME VOLUME VOLUME 15 millititers m milititers 0.03 fluters 2.1 pmts 15 millititers m inters 1.06 quarts pmts 15 millititers m inters 1.06 quarts gallons 0.24 liters 1 inters 3.5 cubic feet cubic feet 0.47 liters 1 m3 cubic meters 3.3 cubic feet cubic feet 1.06 cubic meters m3 cubic meters 1.3 cubic feet cubic feet 1.0 cubic meters m3 cubic meters m3 cubic meters 1.3 cubic feet 1.0 cubic meters m3 cubic meters m3 cubic meters m3 cubic meters 9.5 (then femperature 5 9 (after cubic meters cubic meters cubic meters cubic meters 9.5 (then femperature 5 9 (after cubic meters	Milester 1.06 Milester	(2000 lb)	6.0	201100							
S	Miles 1.06		VOLUME					agazonomen	VOLUME		
S S milliliters millil	Miles Mile	A STATE OF THE PARTY OF T	Charles are office and an additional selection with the comments and other selections.			6					
State Colsius Colsiu	Hiers 1.06 quarts		u	millilitare	Ē	The state of the s	E	milliliters	0.03	fluid onnces	1 0 2
TEMPERATURE (exact) Temperature Celsius	Items	teaspoons	n .	0.00	E	8		liters	2.1	pints	ĭ.
Figure F		tablespoons	-22	10000	- E	3		liters	1.06	quarts	đ
0.24 Itters 1	S m ³ cubic meters 1.3 cubic yards S m ³ cubic meters 1.3 cubic yards IEMPERATURE (exact) TEMPERATURE (exact) Temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C C Celsius 9.5 (then Fuhrenheit temperature add 32) temperature C C C C C C C C C C C C C C C C C C C	fluid onnces	30		-			liters	0.26	gallons	eg.
Cubic meters 1.3 Cubic meters 1.3 Cubic meters 3.8 Inters I	1	cnbs	27.0	11010		The second secon	m ₋₃	cubic meters	35	cubic feet	11
1	S m 3 No	pints	0 95	liters		The state of the s	E E	cubic meters	1.3	cubic yards	>
1 1 1 1 1 1 1 1 1 1	S m ³ No. 20 10 10 10 10 10 10 10	quarts	0.00	liters	-	G) manufacture design d					
TEMPERATURE (exact)	ture "C Celsius 9.5 (then Fahrenheit temperature add 32) temperature "C Celsius 9.5 (then Fahrenheit temperature add 32) temperature "C Temperature add 32) tem	gamens cubic feet	0.03	cubic meters	m ³			10 P	DEDATIOE (avag		
TEMPERATURE (exact) TEMPERATURE (exact) (c) Colsius 9.5 (then Fahrenheit temperature add 32) Fahrenheit temperature add 32) Temperature add 32) Temperature temperature add 32) Temperature temperature add 32) Temperature temperature add 32) Temperature add 33) Temperature add 32) Temperature add 33) Temperature add 33) Temperature add 33) Temperature add 33) <td>ture "C Celsius 9/5 (then Fahrenheit temperature add 32) temperature "C Temperature add 32) tempera</td> <td>cubic yards</td> <td>0.76</td> <td>cubic meters</td> <td>пз</td> <td>TOTAL STATE OF THE STATE OF THE</td> <td></td> <td>AI 3 I</td> <td>rendione (exac</td> <td></td> <td></td>	ture "C Celsius 9/5 (then Fahrenheit temperature add 32) temperature "C Temperature add 32) tempera	cubic yards	0.76	cubic meters	пз	TOTAL STATE OF THE		AI 3 I	rendione (exac		
Colsius Cols	temperature add 32) temperature **C	T C BA	(15cva) 3011TRC30				0	eniale O	9/5 (then	Fahrenheit	
5.9 lafter Celsius temperature temperature	Ture 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	I C M	TENNIONE (Evaci)			TOTAL PROPERTY OF THE PROPERTY	ن	temperature	add 32)	temperature	
-40 0 40 80 120 160 200	Miss. P. D. 1.30.	Fahrenheit temperature	5/9 (after subtracting	Celsius temperature) 0	The state of the s			S O O		eta en communication de la
	MANS. P. D. J. SH. SH. SH. SH. SH. SH. SH. SH. SH. SH		32)			The state of the s		0	,	160 200	

PREFACE

This contract was prepared by the University of Dayton Research Institute for the Federal Aviation Administration Systems Research and Development Service under Contract FA74WA-3532 during the period July 1974 to March 1976. The report describes the development of a mathematical model of a fire within the cabin of a wide body commercial transport category aircraft. The report is divided into three volumes of which this is the third. Volume I, entitled "Basic Mathematical Model," describes the development and presents example results of the model. Volume II, "Laboratory Test Program," presents the results of a laboratory test and data collection program conducted in support of the development of the model. Volume III. "Computer Program User's Guide," is a guide for use of the computer program which implements the mathematical model.

This contract was administered under the direction of Mr. Robert C. McGuire and Mr. Charles C. Troha of the Systems Research and Development Service, ARD 520. Work was performed at the University of Dayton under the supervision of Mr. Nicholas A. Engler, supervisor of the Applied Systems Analysis Division. Other personnel at the University who have contributed to this program include Mr. James K. Luers, Mr. Jerry B. Reeves, and Mr. Charles D. MacArthur. The author wishes to express his gratitude to all those mentioned for their support, encouragement, and valuable technical contributions. The author also wishes to thank Ms. Jacquelin Aldrich and Ms. Peggy Cummings for their patient assistance in preparing the manuscript.

TABLE OF CONTENTS

SE	CTI	ON NO.	& TITLE	PAGE NO.
	1	INTRO	DUCTION	1
	2	BASIC	DEFINITIONS	3
	3	PROGI	RAM CONSTRUCTION	9
	4	INPUT	DATA PREPARATION	17
		4.1 4.2	Input Data Cards Sample Input	17 33
	5	PROGI	RAM OUTPUT	39
		5.1 5.2	Output Options Output Formats	39 39
	6	PROG	RAM STATISTICS	47
	7	PROG:	RAM AVAILABILITY	49

LIST OF FIGURES

FIGURE NO.	, & TITLE	PAGE NO
2.1	Location of Cabin Lining Surfaces	5
2.2	Location of Seat Groups	6
2.3	Seat Groups - Distinct Surfaces	7
4 1	Numbering of Elements	31

SECTION 1

INTRODUCTION

The Dayton Aircraft Cabin Fire (DACFIR) Simulation Program is the computer implementation of the DACFIR Model developed by the University of Dayton Research Institute. The model is a set of equations and logic designed to predict the time history of the build-up of smoke, heat, and toxic gases in the cabin of an aircraft subjected to fire within a period representative of post crash emergency evacuation time. The model provides a means of tracking the development of the fire and the changes in the cabin environment with time. Input to the model includes a description of the cabin geometry and ventilation conditions, a description of the material properties as measured by laboratory tests, and a description of the initial fire situation. The DACFIR Simulation Program as presented in this report applies to a particular cabin geometry, that of a representative wide-body aircraft cabin section. This program has been designated as DACFIR, Version 1, May 1976. A complete description of the DACFIR Model is contained in Volume I, "Basic Mathematical Model".

The intent of this user's guide is to provide instruction for the efficient use of the DACFIR Simulation Program. This documentation contains basic definitions, a flow chart and description of the main program, a description of the program input and output, sample program input and output, program statistical data, and information concerning the availability of the program code. It does not contain a detailed description of the computer program code and thus is not intended as a complete reference source for the computer programmer.

It should be stressed that careful preparation of the input cards is of the utmost importance. A simulation program by its very nature utilizes a relatively large amount of computer time, and seemingly insignificant errors in the input can easily result in serious errors in the results if not cause abnormal termination of the run.

SECTION 2

BASIC DEFINITIONS

An <u>element</u> is the smallest unit of surface area which is utilized in the simulation, and is a square whose dimension is six inches per side. An element may exist, at any specified time, in one of four primary states, virgin, smoldering, flaming or charred or in one of three secondary states which represent temporary conditions intermediate to the primary states.

A <u>surface</u> is defined as consisting of a group of elements all of which lie in the same horizontal or vertical plane and whose material properties are identical. The program recognizes twenty (20) cabin lining surfaces and nine (9) seat groups. The twenty cabin lining surfaces are depicted in Figure 2.1 and are as follows:

- 1. Carpet
- 2. Lower Right Sidewall Panel
- 3. Right Window Reveals and Window Transparencies (considered one surface)
- 4. Upper Right Sidewall Panel
- 5. Right Side Passenger Service Unit
- 6. Right Side Stowage Bin Bottom
- 7. Right Side Stowage Bin Face
- 8. Right Ceiling Panel
- 9. Right Center Stowage Bin Face
- 10. Right Center Stowage Bin Bottom
- 11. Left and Right Center Passenger Service Units
- 12. Left Center Stowage Bin Bottom
- 13. Left Center Stowage Bin Face
- 14. Left Ceiling Panel
- 15. Left Side Stowage Bin Face
- 16. Left Side Stowage Bin Bottom
- 17. Left Side Passenger Service Unit
- 18. Upper Left Sidewall Panel
- 19. Left Window Reveals and Window Transparencies (considered one surface)
- 20. Lower Left Sidewall Panel

The seat groups are nine (9) in number and are referenced as shown in Figure 2.2.

- 1. lst Row, Left
 2. lst Row, Center
 3. lst Row, Right
 4. 2nd Row, Left
 5. 3rd Row, Center
 6. 2nd Row, Right
 7. 3rd Row, Left
 8. 3rd Row, Center
 9. 3rd Row, Right
- 5. 2nd Row, Center

The left and right seat groups each contain three individual seats. The center seat groups each contain four individual seats.

Each seat group consists of seven (7) surfaces as shown in Figure 2.3:

- 1. Cushion Bottom
- 2. Lower Rear Backrest
- 3. Upper Rear Backrest
- 4. Backrest Top
- 5. Backrest Front
- 6. Cushion Top
- 7. Cushion Front

The computer program utilizes seven (7) types of materials:

- 1. Carpet Material
- 2. Sidewall Material
- 3. Window Reveal-Transparency Material
- 4. PSU Facing Material
- 5. Stow Bin Material
- 6. Ceiling Panel Material
- 7. Seat Upholstery Material with Padding

It is assumed that all materials can yield one or more of the following toxic gases as the material becomes involved in the fire:

1.	CO	6.	H ₂ S
2.	HC1	7.	NH ₃
3.	HCN	8.	NO_{X}^{3}
4.	HF	9.	COCI
5	SO		

Whenever surfaces, seat groups, materials or toxic gases are referenced, the numbering will <u>always</u> be identical with that given above.

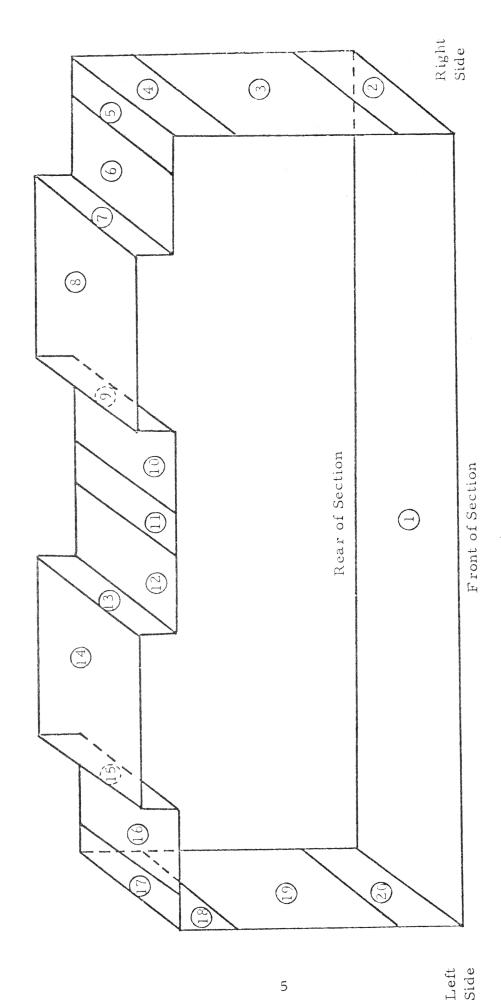


Figure 2, 1 Location of Cabin Lining Surfaces

INTERIOR GEOMETRY

(Not to Scale)

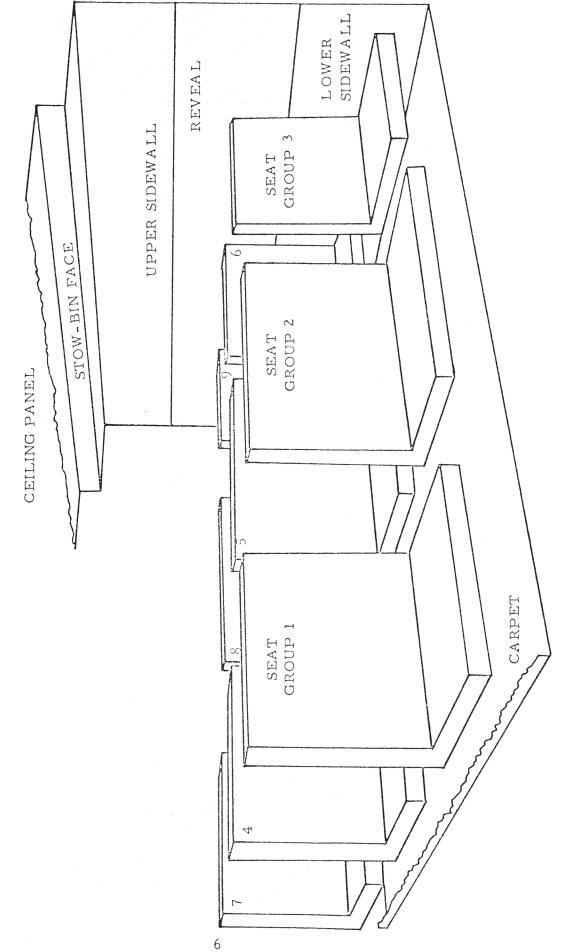


Figure 2.2. Location of Seat Groups

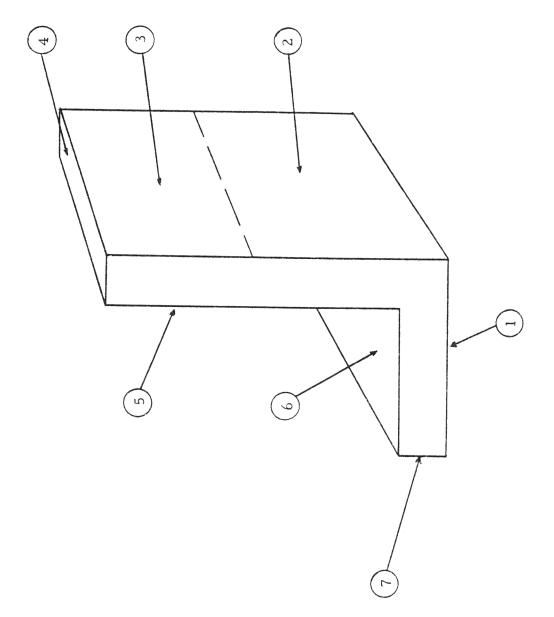
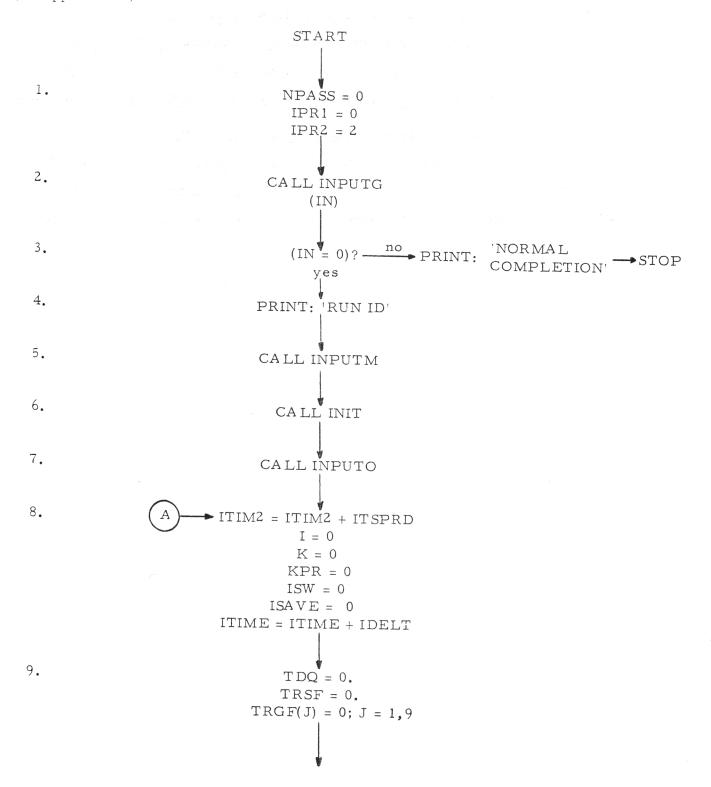
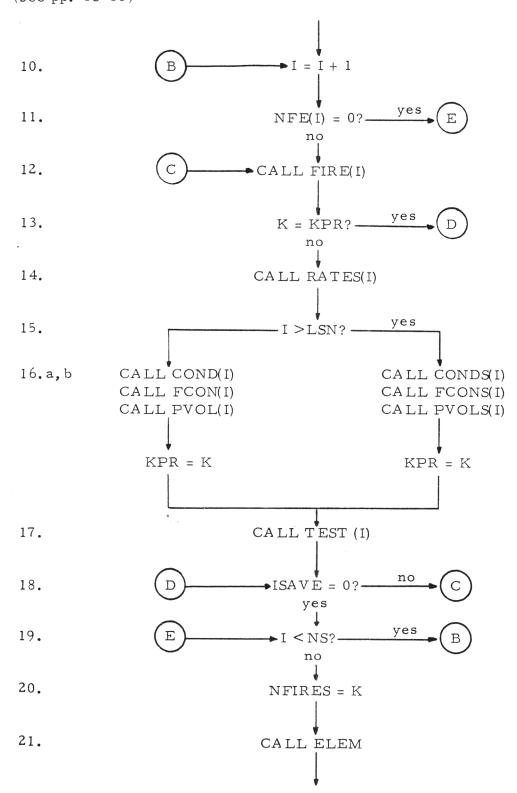


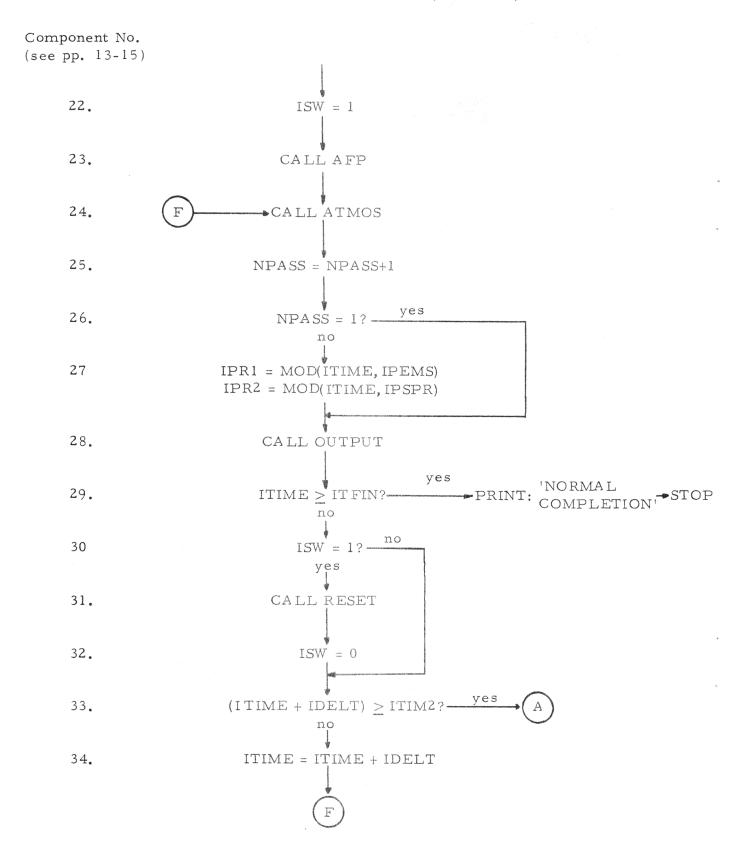
Figure 2.3. Seat Groups - Distinct Surfaces


SECTION 3 PROGRAM CONSTRUCTION

That is, each subroutine has as its purpose a specific function or set of computations. These subroutines are linked by means of the coding in the 'Main Program'. The coding in the 'Main Program' then, provides the necessary controls for the logical flow of the sequence of computations.


The following three pages contain a flow diagram of the Main Program. The numbers in the left margin are utilized to reference the diagram to a brief description of each program step or block. This narrative is contained on the pages immediately following the flow charts.

'MAIN PROGRAM' FLOW CHART


Component No. (see pp. 13-15)

Component No. (see pp. 13-15)

'MAIN PROGRAM' FLOW CHART (Continued)

COMMENTS FOR PROGRAM FLOW CHART

No.

- 1. 'NPASS' is a counter, initialized at this point, which will contain the number of times the cabin atmosphere computations have been performed. IPR1, IPR2 are print controls.
- 2. Subroutine 'INPUTG' initializes and defines those variables pertaining to the geometry of the cabin section.
- 3. Test for run termination (no additional input cards to be read).
- 4. Eighty characters of run identification are printed.
- 5. Subroutine 'INPUTM' reads all input data pertaining to the material properties of each surface.
- 6. Subroutine 'INIT' performs basic computations from the input data and initializes those variables required to start the integration.
- 7. Subroutine 'INPUTO' reads all data relating to the ignition source.
- 8. This point is the start of the primary integration loop in the program.

 'ITIM2' is the time associated with the flame propagation computations,

 'ITIME' is the time associated with the cabin atmosphere computations.
- 9. Initialize sums which contain emission rates for all fires.
- 10. 'I' is the surface index (1 through 20 are cabin lining surfaces, 21 through 29 are seat groups).
- 11. Test: Any flaming elements on surface 'I'? If not, by-pass flame propagation computations for this surface.
- 12. Subroutine 'FIRE' isolates a fire on the specified surface and performs the computations of the flame properties.
- 13. If K = KPR at this point, a new fire was not found in subroutine 'FIRE'.
- 14. Subroutine 'RATES' determines the heat flux at various points associated with one specific fire, and interpolates for material properties as a function of heat flux.
- 15. If I > LSN, the fire under consideration is located on a seat; otherwise the fire is located on a cabin lining surface.
- 16. Subroutines 'COND', 'CONDS' determine flame propagation via conduction.

No.

Subroutines 'FCON', 'FCONS' determine flame propagation via flame contact.

Subroutines 'PVOL', 'PVOLS' test for possible elemental change of state due to the pyrolysis (smoldering) of elements in the vicinity of a fire.

- 17. Subroutine 'TEST' determines if any flaming elements change to the charred state and sums the emission rates for each fire.
- 18. If 'ISAVE' ≠ 0; then return control to subroutine 'FIRE' (continue to search surface 'I' for fires).
- 19. Test: Have all cabin lining surfaces and seat groups been examined this time step? If not, increment for next surface.
- 20. The variable 'NFIRES' contains the total number of distinct fires in progress during this time interval.
- 21. Subroutine 'ELEM' updates the time counters and indicators associated with each element.
- 22. 'ISW' is a switch. When ISW = 1, indicates that the flame propagation computations have been performed this time step.
- 23. Subroutine 'AFP' determines the total number of flaming and smoldering elements and sums emission rates.
- 24. Subroutine 'ATMOS' contains all of the equations describing the cabin atmosphere.
- 25. Add 'one' to the pass counter.
- 26. Test: If this is the first pass through the program, automatically print flame propagation and cabin atmosphere data.
- 27. Determine if flame propagation and/or cabin atmosphere data is to be printed this time step.
- 28. Subroutine 'OUTPUT' consists of the required print and format statements and controls to obtain the output data as required.
- 29. Test: If simulation time has expired, print appropriate message and terminate the run.
- 30.- If the flame propagations computations have been performed this
- 32. pass, reset computer words containing the element states information.

COMMENTS FOR PROGRAM FLOW CHART (Continued)

No.

- 33. If flame propagation computations are to be performed the next time step, re-enter appropriate loop.
- 34. If flame propagation are not required next time step, increment cabin atmosphere '\Delta t' and re-enter cabin atmosphere computations.

SECTION 4

INPUT DATA PREPARATION

This section describes the input requirements of the DACFIR Computer Program. The preparation of each input card is described, and, where necessary, a brief explanation of the input data requirements and options is included. Familiarity with the DACFIR Mathematical Model, as described in Volume I, is assumed. Following the input preparation instructions is a listing of a sample input data deck. The specific set of input data shown in the listing was used to create Case 1 of the sample runs discussed in Section 7, Volume 1.

In the data description shown below, three format types are referenced. They are

Type	Description
A	Alphanumeric, any combination of letters, numbers, and special characters (including blanks) may be entered in the appropriate column.
I	Integer, the entry must be right justified in the field (range of columns). Example: when the number '25' is entered in a five-column field, it must be preceded by three blanks.
F	Floating point, the entry may appear any- where in the specified field, but the insertion of a decimal point is mandatory.

4.1 INPUT DATA CARDS

Input data cards are to be prepared as described below. Some of the input data for the version of the DACFIR Program described here (Version 1, 30 May 1976) is to be regarded as fixed and not user-defineable. This data consists of various geometric relationships common to all widebody cabin interiors. The fixed data is indicated in the discussion and users

of the program should prepare this data according to the example data set given in Section 4.2. Card Number in the list refers to the number in the sample data set.

Card Type	Card Number	Var.	Dim.	Col.	Format Type	Description
1	1	IDENT	20	1-80	A	Run identification
2 - 5	2 - 133	-	-	- - -	-	Fixed input data (see sample data, pp. 33-35)
6	134	SQD	-	1-10	F	Element square dimension (fixed)
6	134	RFWS	- - - - -	11-20	F	Flame spread rate sidewall to seat or seat to sidewall (ft/sec)
6	134	DWS	-	21 - 30	F	Separation distance outside seats to sidewall (ft)
6	134	СН	-	31-40	F	Cabin floor to ceiling height (ft)
6	134	CL	•	41 - 50	F	Cabin section length (see Figure 5.1, Volume 1) (ft)
6	134	C W	-	51-60	F	Cabin width (ft)
6	134	SL	•	61 - 70	F	Detailed section length (see Figure 5.1, Volume 1) (ft)
6	134	sw	•	71-80	F	Section width (must be equal to 1/2 the value of CW)(ft)in columns 51-60
7 - 9	135 - 138	~	-	-	-	Fixed input (see sample data, p. 35)
10	1 39	IMATĻ	20	1-2	I	Material type for each surface taken in order around the cabin interior (material type denoted by the integers 1-7, see p. 4)
. 11	140	IMATS	7	1-2	I	Material type for each surface on the seats (see Figure 2.3 & p. 4)

Card Type	Card Number	Var.	Dim.	Col.	Format Type	Description
12	141	GTAB	7	1-10 61-70	F	Stochiometric fuel to oxygen ratio for each combustion of the seven material types (unitless)
12	142	QTAB	7	1-10 61-70	F	Effective heat of com- bustion for each of the seven material types (Btu/lbm)
12	143	RTAB	7	1-10 61-70	F	Fuel vapor density at base of fire for each of the seven material types (lbm/ft ³)
12	144	UTAB	7,	1-10 61-70	F	Fuel vapor flow velocity at base of fire for each of the seven material types (ft/sec)
12	145	TP	7	1-10 : 61-70	F	Time of transition of an element from the ambient to the smoldering state, each material type (sec)
12	146	TPC	7	1-10	F	Time of transition of an element from the smoldering to the charred state, each material type (sec)
12	147	RSS	7	1-10	F	The smoke production rate for each of the seven material types in the smoldering state, 'particles'/(ft ² · sec)
						(See Volume 1, Section 5 for discussion of the units 'particles of smoke'.
12	148	RGS(1)	7	1-10 61-70	F	Production rate of CO for each material in the smoldering state, microlbs/ft²·sec)(1 microlb = 106 lb)

Card Type	Card Number	Var.	Dim.	Col.	Format Type	Description
12	149	RGS(2)	7	1-10 61-70	F	Production rate of HCl for each material in the smoldering state, microlbs/(ft ² · sec)
12	150	RGS(3)	7	1-10 61-70	F	Production rate of HCN for each material in the smoldering state, microlbs/(ft ² · sec)
12	151	RGS(4)	7	1-10 61-70	F	Production rate of HF for each material in the smoldering state, microlbs/(ft ² · sec)
12	152	RGS(5)	7	1-10 61-70	Ē.	Production rate of SO ₂ for each material in the smoldering state, microlbs/(ft ² · sec)
12	153	RGS(6)	7	1-10	F	Production rate of H ₂ S for each material in the smoldering state, microlbs/(ft ² · sec)
12	154	RGS(7)	7	1-10 61-70	F	Production rate of NH ₃ for each material in the smoldering state, microlbs/(ft ² · sec)
12	155	RGS(8)	7	1-10 61-70	F	Production rate of NO for each material in the smoldering state, microlbs/(ft² · sec)
12	156	RGS(9)	7	1-10 61-70	F	Production rate of COCL ₂ for each material in the smoldering state, microlbs/(ft ² · sec)

Card Type 13 (numbers 157 through 275 in the sample deck) consist of tables of various material properties as a function of Q, the heat flux in $Btu/(ft^2 \cdot sec)$. Each table consists of six X, Y pairs of points -- X being the heat flux, Y the material property. If, during the simulation, a material property value is needed for a heat flux less than Q_1 , then the value Y_1 will

be used. Linear extrapolation is used to obtain a material property value for a heat flux greater than Q_6 . The formats of these tables are as follows.

Cols. 1-5 6-13 14-18 19-26 27-31 32-39 40-44
$$Q_1$$
 Y_1 Q_2 Y_2 Q_3 Y_3 Q_4 45-52 53-57 58-65 66-70 71-78 Y_4 Q_5 Y_5 Q_6 Y_6

It is <u>not necessary</u> that the heat flux values be separated by equal increments. All values are input in 'F' format.

Card Type	Card No.	Table as a Function of Heat Flux (Q)
13	157	Horizontal flame spread rate, material #1, ft/sec
11	158	Horizontal flame spread rate, material #2, ft/sec
11 2	159	Horizontal flame spread rate, material #3, ft/sec
11	160	Horizontal flame spread rate, material #4, ft/sec
11	161	Horizontal flame spread rate, material #5, ft/sec
11	162	Horizontal flame spread rate, material #6, ft/sec
11	163	Horizontal flame spread rate, material #7, ft/sec
11	164	Vertical upward flame spread rate, material #1, ft/sec
11	165	Vertical upward flame spread rate, material #2, ft/sec
11	166	Vertical upward flame spread rate, material #3, ft/sec
11	167	Vertical upward flame spread rate, material #4, ft/sec
11	168	Vertical upward flame spread rate, material #5, ft/sec
11	169	Vertical upward flame spread rate, material #6, ft/sec
	170	Vertical upward flame spread rate, material #7, ft/sec
11	171	Vertical downward flame spread rate, material #1, ft/sec
11	172	Vertical downward flame spread rate, material #2, ft/sec
11	173	Vertical downward flame spread rate, material #3, ft/sec
11	174	Vertical downward flame spread rate, material #4, ft/sec
11	175	Vertical downward flame spread rate, material #5, ft/sec
11	176	Vertical downward flame spread rate, material #6, ft/sec

Card Type	Card No.	Table as a Function of Heat Flux (Q)
13	177	Vertical downward flame spread rate, material #7, ft/sec
11	178	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #1, sec
11	179	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #2, sec
11	180	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #3, sec
11	181	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #4, sec
11	182	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #5, sec
11	183	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #6, sec
11	184	Time interval, time lag from the time of flame contact to the time material begins flaming combustion, material #7, sec
11	185	Heat release rate while material #1 is undergoing flaming combustion, BTU/(ft ² · sec)
11	186	Heat release rate while material #2 is undergoing flaming combustion, BTU/(ft ² · sec)
11	187	Heat release rate while material $\#3$ is undergoing flaming combustion, BTU/(ft ² · sec)
11	188	Heat release rate while material #4 is undergoing flaming combustion, $BTU/(ft^2 \cdot sec)$
11	189	Heat release rate while material #5 is undergoing flaming combustion, $BTU/(ft^2 \cdot sec)$
11	190	Heat release rate while material #6 is undergoing flaming combustion, $BTU/(ft^2 \cdot sec)$
11	191	Heat release rate while material #7 is undergoing flaming combustion, BTU/(ft ² · sec)
"	192	Smoke production rate for material #1 in the flaming state, 'particles'/(ft ² · sec) (A smoke 'particle' is the amount of smoke which if contained in a volume of one cubic foot would cause the light transmission over a one foot path to be reduced by 10%)

Card Type	Card No.	Table as a Function of Heat Flux (Q)
13	193	Smoke production rate for material #2 in the flaming state, 'particles'/(ft ² · sec)
11	194	Smoke production rate for material #3 in the flaming state, 'particles'/(ft ² · sec)
11	195	Smoke production rate for material #4 in the flaming state, 'particles'/(ft ² · sec)
11	196	Smoke production rate for material $\#5$ in the flaming state, 'particles'/(ft ² · sec)
11	197	Smoke production rate for material $\#6$ in the flaming state, 'particles'/(ft ² . sec)
11	198	Smoke production rate for material $\#7$ in the flaming state, 'particles'/(ft ² · sec)
11	199	Production rate of CO for material #1 in the flaming state, microlbs/($ft^2 \cdot sec$) (1 microlb = 10^{-6} lb)
11	200	Production rate of CO for material #2 in the flaming state, microlbs/(ft ² · sec)
11	201	Production rate of CO for material $\#3$ in the flaming state, microlbs/(ft ² · sec)
11	202	Production rate of CO for material #4 in the flaming state, microlbs/ $(ft^2 \cdot sec)$
11	203	Production rate of CO for material #5 in the flaming state, microlbs/(ft2 · sec)
11	204	Production rate of CO for material #6 in the flaming state, microlbs/(ft ² · sec)
11	205	Production rate of CO for material $\#7$ in the flaming state, microlbs/(ft ² . sec)
11	206	Production rate of HCl for material #1 in the flaming state, microlbs/(ft ² · sec)
11	207	Production rate of HCl for material #2 in the flaming state, microlbs/($ft^2 \cdot sec$)
11	208	Production rate of HCl for material #3 in the flaming state, microlbs/($ft^2 \cdot sec$)
11	209	Production rate of HCl for material $\#4$ in the flaming state, microlbs/(ft ² . sec)
11	210	Production rate of HCl for material $\#5$ in the flaming state, microlbs/(ft ² . sec)

Card	Card	
Type	No.	Table as a Function of Heat Flux (Q)
13	211	Production rate of HCl for material #6 in the flaming state, microlbs/ $(ft^2 \cdot sec)$
11	212	Production rate of HCl for material #7 in the flaming state, microlbs/($ft^2 \cdot sec$)
11	213	Production rate of HCN for material #1 in the flaming state, microlbs/(ft^2 . sec)
11	214	Production rate of HCN for material #2 in the flaming state, microlbs/(ft^2 · sec)
11	215	Production rate of HCN for material $\#3$ in the flaming state, microlbs/(ft ² · sec)
11	216	Production rate of HCN for material $\#4$ in the flaming state, microlbs/(ft ² · sec)
11	217	Production rate of HCN for material $\#5$ in the flaming state, microlbs/(ft ² . sec)
11	218	Production rate of HCN for material #6 in the flaming state, microlbs/(ft^2 · sec)
11	219	Production rate of HCN for material #7 in the flaming state, microlbs/(ft^2 · sec)
11	220	Production rate of HF for material #1 in the flaming state, microlbs/(ft ² · sec)
11	221	Production rate of HF for material #2 in the flaming state, microlbs/(ft 2 · sec)
11	222	Production rate of HF for material $\#3$ in the flaming state, microlbs/(ft ² · sec)
11	223	Production rate of HF for material #4 in the flaming state, microlbs/(ft 2 · sec)
11	224	Production rate of HF for material $\#5$ in the flaming state, microlbs/(ft ² · sec)
11	225	Production rate of HF for material $\#6$ in the flaming state, microlbs/(ft ² · sec)
11	226	Production rate of HF for matterial $\#7$ in the flaming state, microlbs/(ft ² · sec)
11	227	Production rate of SO_2 for material #1 in the flaming state, microlbs/(ft ² · sec)
11	228	Production rate of SO_2 for material #2 in the flaming state, microlbs/(ft ² . sec)

Card Type	Card No	Table as a Function of Heat Flux (Q)
13	229	Production rate of SO_2 for material #3 in the flaming state, microlbs/(ft ² · sec)
11	230	Production rate of SO_2 for material #4 in the flaming state, microlbs/(ft ² · sec)
11	231	Production rate of SO2 for material $\#5$ in the flaming state, microlbs/(ft ² \cdot sec)
11	232	Production rate of SO2 for material #6 in the flaming state, microlbs/(ft ² · sec)
11	233	Production rate of SO ₂ for material #7 in the flaming state, microlbs/(ft ² · sec)
11	234	Production rate of H_2S for material #1 in the flaming state, microlbs/(ft ² · sec)
11	235	Production rate of H2S for material #2 in the flaming state, microlbs/(ft ² · sec)
11	236	Production rate of H_2S for material #3 in the flaming state, microlbs/(ft ² . sec)
t t	237	Production rate of H_2S for material #4 in the flaming state, microlbs/(ft ² . sec)
11	238	Production rate of H_2S for material #5 in the flaming state, microlbs/(ft ² . sec)
11	239	Production rate of H_2S for material #6 in the flaming state, microlbs/(ft ² · sec)
11	240	Production rate of H_2S for material #7 in the flaming state, microlbs/(ft ² · sec)
tt i	241	Production rate of NH ₃ for material #1 in the flaming state, microlbs/(ft ² · sec)
tt v.	242	Production rate of NH $_3$ for material #2 in the flaming state, microlbs/(ft 2 · sec)
11	243	Production rate of NH $_3$ for material #3 in the flaming state, microlbs/(ft 2 · sec)
11	244	Production rate of NH3 for material #4 in the flaming state, microlbs/(ft 2 · sec)
11	245	Production rate of NH3 for material #5 in the flaming state, microlbs/($ft^2 \cdot sec$)
11	246	Production rate of NH $_3$ for material #6 in the flaming state, microlbs/(ft 2 · sec)

Card Type	Card No.	Table as a Function of Heat Flux (Q)
13	247	Production rate of NH3 for material #7 in the flaming state, microlbs/($ft^2 \cdot sec$)
11	248	Production rate of NO_x for material #1 in the flaming state, microlbs/(ft ² · sec)
11	249	Production rate of $NO_{\mathbf{x}}$ for material #2 in the flaming state, microlbs/(ft ² · sec)
11	250	Production rate of NO_x for material #3 in the flaming state, microlbs/(ft ² · sec)
11	251	Production rate of NO $_{\mathbf{x}}$ for material #4 in the flaming state, microlbs/(ft ² · sec)
11	252	Production rate of NO_x for material #5 in the flaming state, microlbs/(ft ² · sec)
11	253	Production rate of NO $_{\rm x}$ for material #6 in the flaming state, microlbs/(ft ² · sec)
11	254	Production rate of NO_x for material #7 in the flaming state, microlbs/(ft ² · sec)
11	255	Production rate of COCl ₂ for material #1 in the flaming state, microlbs/ $(ft^2 \cdot sec)$
11	256	Production rate of $COCl_2$ for material #2 in the flaming state, microlbs/(ft ² · sec)
11	257	Production rate of $COCl_2$ for material #3 in the flaming state, microlbs/(ft ² · sec)
11	258	Production rate of $COCl_2$ for material #4 in the flaming state, microlbs/(ft ² • sec)
11	259	Production rate of $COCl_2$ for material #5 in the flaming state, microlbs/(ft ² · sec)
11	260	Production rate of $COCl_2$ for material #6 in the flaming state, microlbs/(ft ² · sec)
11	261	Production rate of $COCl_2$ for material #7 in the flaming state, microlbs/(ft ² . sec)
11	262	Time interval, time required for material #1 to stop smoldering after heat flux falls below the threshold value for this material, sec
11	263	Time interval, time required for material #2 to stop smoldering after heat flux falls below the threshold value for this material, sec

Card	Card	Table 25 2 Function of Heat Flow (O)
Type	No.	Table as a Function of Heat Flux (Q)
13	264	Time interval, time required for material #3 to stop smoldering after heat flux falls below the threshold value for this material, sec
11	2,65	Time interval, time required for material #4 to stop smoldering after heat flux falls below the threshold value for this material, sec
11	266	Time interval, time required for material #5 to stop smoldering after heat flux falls below the threshold value for this material, sec
11	267	Time interval, time required for material #6 to stop smoldering after heat flux falls below the threshold value for this material, sec
t t	268	Time interval, time required for material #7 to stop smoldering after heat flux falls below the threshold value for this material, sec
11	269	Time interval, from time material #1 begins flaming combustion to time material becomes charred, sec
1.1	270	Time interval, from time material #2 begins flaming combustion to time material becomes charred, sec
1 1	271	Time interval, from time material #3 begins flaming combustion to time material becomes charred, sec
11	272	Time interval, from time material #4 begins flaming combustion to time material becomes charred, sec
***	273	Time interval, from time material #5 begins flaming combustion to time material becomes charred, sec
11	274	Time interval, from time material #6 begins flaming combustion to time material becomes charred, sec
11	275	Time interval, from time material #7 begins flaming combustion to time material becomes charred, sec

Two methods may be used to specify the ignition source for a simulation. The first method is illustrated by the sample data of Section 4.2 and the data preparation instructions are given immediately below. This first method consists of specifying the amount and location of an ignition source material, such as a flammable liquid. The ignition source material must be located on one of the cabin interior surfaces and must be described by the flammability and combustion toxicity parameters given below. At the start of the simulation, all of the ignition source material is assumed to be on fire and this fire will continue to burn for a period of time determined by the expression $t_{ig} = m_{fi}/m_{ft} = m_{fi}/(\rho_{oi}u_{oi}A_{ft})$ where t_{ig} is the burn time in seconds, m_{fi} is the mass of ignition source material in lbm, m_{ff} is the material burning rate which is the product of $\rho_{\mbox{\scriptsize oi}},$ the material fuel vapor density entering the flame base, u , the fuel vapor velocity entering the flame base, and A_f; the total area of the ignition source material. For further discussion of this method of describing ignition, see Section 7 of The second method of specifying ignition is discussed on page 32 Volume I. of this volume.

Card	Card					
Туре	No.	Var.	Dim.	Col.	Type	Definition
14	276	QP	7	1-10 • 61-70	F	Heat flux (threshold value) at which each material type begins to smolder, Btu/(ft ² · sec)
15	277	CPM		1-10	F	Specific heat of materials at ambient conditions, average value, Btu/(lbm · OR)
		RHOM	• •	21-30	F	Bulk density of materials, average value (lbm/ft ³)
		XK		21-30	F	Thermal conductivity of materials at ambient conditions, average value, Btu/(ft · sec · OR)
		XPEN		31-40	F	Heat penetration depth of materials, average value, ft
		TO		41-50	F	Ambient temperature, OR

Card Type	Card No.	Var.	Dim.	Col.	Type	Definition
16	278	DELTA	Т	1-10	F	Integration time interval for the cabin atmosphere computations, sec
		TFINAL	• • • • • • • • • • • • • • • • • • •	11-20	F	End time for the simulation run, sec
		IRATIO		21-25	I	Ratio: integration time interval of flame spread computations integration time interval of cabin atmosphere computations (must be ≥ 1)
		IPEMS		26-30	I	Print interval, cabin atmosphere, sec
		IPSPR		31-35	ı I	Print interval, flame spread data, sec
17	279	NV		1-5	I	Number of open doorways (may be = 0)
		BVENT		11-20	Ĭ,	Distance, floor to top of open doorway, it (same for all doorways)
18	280	WVENT	,	1-10	F	Width of each open doorway, ft *This card must be deleted if NV = 0
19	281	QBKGND		1-10	F	Background heat flux, Btu/(ft ² · sec)
20	282	IGSN		1-5	I	Surface on which ignition source material resides. If this value is entered as zero, the second method of specifying ignition is indicated. In this case, no cards of type 21, 22, or 23 should appear in this data deck.
		QCI		6-15	F	Effective heat of combustion of the ignition source material, Btu/lbm
		GAMI		16-25	F	Stochiometric fuel to oxygen ratio of ignition source material
		RHOI		26-35	F	Fuel vapor density at base of ignition source, lbm/ft ³
		XMUI		36-45	F	Fuel vapor flow velocity at base of ignition source, ft/sec
		XMFI		46-55	F	Mass of ignition source material to be burned, 1bm

Card	Card					
Type	No.	Var.	Dim.	Col.	Type	Description
21	283	RSI		1-10	F	Smoke production rate, ignition source material, 'particles'/ft ² . sec
		RTGI(1)		11-20	F	Production rate of CO, ignition source material, microlb/(ft ² · sec) (1 microlb = 10 ⁻⁶ lbm)
		RTGI(2)		21-30	H	Production rate of HCl, ignition source material, microlb/(ft ² · sec)
		RTGI(3)		31-40	F	Production rate of HCN, ignition source material, microlb/(ft ² · sec)
		RTGI(4)		41-50	F	Production rate of HF, ignition source material, microlb/(ft2 - sec)
		RTGI(5)		51-60	F	Production rate of SO ₂ , ignition source material, microlb/(ft ² · sec)
		RTGI(6)		61-70	F	Production rate of H ₂ S, ignition source material, microlb/(ft ² · sec)
		RTGI(7)		71-80	F	Production rate of NH ₃ , ignition source material, microlb/(ft ² · sec)
21	284	RTGI(8)		1-10	F	Production rate of NO $_{\mathbf{x}}$, ignition source material, microlb/(ft ² + sec)
		RTGI(9)		11-20	F	Production rate of COCl ₂ , ignition source material, microlb/(ft ² · sec)
22	285	NIJSQ		1-5	1	The number of elements covered by the ignition source
		PIGN		6-15	F	Parimeter of ignition source fire, it
23	286 thru	IGNIJ (2100)	1-5	I	i index of ignition source element
	301			6-10	7	j index of ignition source element
						Enter one pair of i, j indices per card (total number of cards will be equal to the value of NIJSQ) For numbering of elements, see Figure 4.1.
24	302	NIJC		1-5	I ·	Number of elements (on any surface) to be set to the charred (inert) state at the start of the simulation. If the value = zero, do not include cards of type 25 in the deck.
25	(not	I, J		1-5		i index of inert element
	show	n)		6-10		j index of inert element
						Enter one pair of i, j indices per card (total number of cards will be equal to the value of NIJC

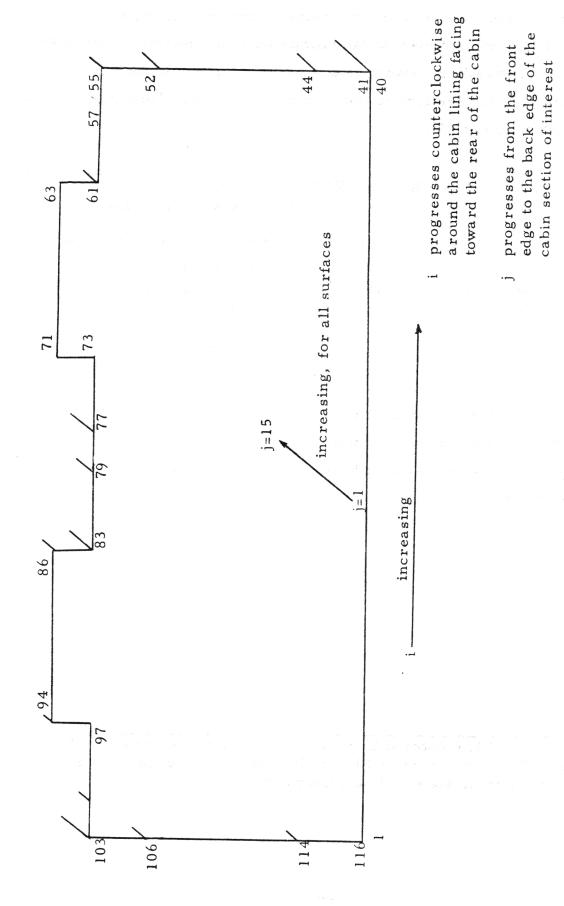


Figure 4.1. Numbering of Elements

The second method for specifying the ignition source is somewhat more simple than the first. In this method, any number of elements on one or more surfaces can be set to the flaming state at the start of the simulation. To indicate this method, a zero is entered in column 5 of card type 20. Initialization of the elements to the flaming state is done by entering values on card types 26 and 27.

Card Type	Card No.	Var.	Dim.	Col.	Туре	Description
26	303	NOFL		1-5	I	*Total number of flaming elements on surface ISFL.
		ISFL		6-10		Surface number on which the elements identified on the following type 27 cards are located.
27	(not	I, J		∫ 1-5	I	i index of flaming element
	shown	1		$\begin{cases} 1-5 \\ 6-10 \end{cases}$		j index of flaming element
				•		Enter one pair of i, j indices per card to a total of NOFL cards.

If elements are to be initialized to flaming on additional surfaces, the deck should continue with groups of cards of types 26 and 27 arranged as above until all desired elements are initialized. No further cards are necessary following the last type 27 card.

^{*}If the value of NOFL entered is zero, a zero must be entered for the variable ISFL and this card will be the last card in the deck. No initialization to the flaming state will be performed.

4.2 SAMPLE INPUT

The following six pages present a sample input data deck.

		-									
		•									
		Col.									
Comi	C	Q									
Card	Card										
Type	No.										
	1	WIDE-	BODY CA	SE 1	S	0 A I	MATERI	ALS.	FLOOR	SPILL	FIRE
1 2 3		20	9	7	22						
3		0.	0.			.0					
11	_	1.0	0.	• ;	0	•					
11	5	1.0	0.	r	0						
11		1.0	0.		0						
11		0.	0 •			1.0					
**		0. 1.0	0.			1.0					
**	10	0.	0.		0	1.0					
11	10	-1.0	0.		0						
**		0.	0.			1.0					
11		0.	0.			1.0					
11		0.	0.		-	1.0					
"	15	1.0	0.		0						
11		0.	G.		-	1.0					
"		-1.0	0.		0						
11		0 •	0.			1.0					
11	20	0.	0.			1.0					
11	20	-1.0 -1.0	0.		0 -						
2		-1.0	0.		0 .						
4		1	9	1	40	. 1	15	0.0			
5		21	1	10	2	5	1	G	1	-1	0
5	25	22	14	27	1	4	1	-13	i	0	٥
5		23	31	40	2	5	ī	-30	ī	-1	a
5		24	1	10	7	10	1	C	1	-6	Ō
5		25	14	27	6	9	1	-13	1	-5	3
5		26	31	40	7	10	1	-30	1	-6	0
5	30	27	1	10	12	15	1	. 0	1	-11	0
5		28	14	27	11	14	1	-13	1	-10	Ü
5 1		2.3	31	40	12	15	1	-30	1	-11	0
5		5	41	41 54	43	1 15	15 0	0.0 55	4	0	0
5	35	-23	43	43	2	4	õ	10	1 -1	23	0
5	33	-26	43	43	7	9	Č	10	-1	28	3
5		-29	43	43	12	14	Ö	10	-1	33	å
4		Q	7	44	51	1		0.0	•		•
5		5	41	54	1	15	0	55	1	0	0
5	40	-23	44	49	5	5	0	10	-1	62	1
5		-23	44	49	5	5	G	10	1	-38	1
5		-26	44	49	10	10	0	10	-1	62	1
5		-25	44	49	10	10	ũ	10	1	-39	1
5	45	-29	44 44 4	49	15 15	15	0	10	-1	62	1
34555555555555555555555555555	73	- 2 9	1	43 52	15 54	15 1	0 15	10	1	-38	1
-1		•		96	24	-	13	0.0			

		5									
		ı.				-					
		Col.									
Card	Card	O									
Type	No.	_		٠							_
5	47	5	41	54	1	15	0	55	1	0	0
4		0	0	55	56	1	15	7.0			
4	50	0	0	57 61	60 62	1	15 15	7.0			
4	50	8	61	62		1 15	0	0.0 63			4
5		0	G	63	71	1	15	e.0 ·	1	G	0
4		Ö	1	72	73	1	15	0.0			
4		8	72	73	1	15	Č	71	1	G	a
3 4	55	ŏ	٥	74	77	1	15	7.0	•		•
4	55	Q	Ö	78	79	1	15	7.0			
1		0	0	0.8	93	1	15	7.0			
4		0	1	84	85	1	15	0.0			
5		14	84	85	1	15	0	86	1	0	0
4	60	0	0	86	94	1		0.8.			
4		0	1	95	96	1	15	0.0			
5		14	95	96	1	15	0	34	1	Ω	0
4		3	Q	97	106	1	15	7.0			
4		0	C	101	102	1	15	7.0			
4	65	0	1	103	105	1	15	0.0			
5		17	103	116	1	15	C	102	1	0	0
4		0	7	106	113	1	15	0.0			
5		17	103	116	1	15	G	102	1	0	0
5		-21	108	113	5	5	0	1	1	-95	1
5	70	-21 -24	108	113	5	5	C	1	-1	119	1
5			108 108	113	10	10	C	1	1	-95	1
5		-24 -27	108	113 113	10	1¢ 15	G	1	-1	119	1
ځ		-27	108	113	15 15	15	0	1 1	1 -1	- 95	1
5	75	0	4	114	116	1	15	0.0	-1	119	1
5	15	17	103	116	1	15	10	102	1	a	0
<u> </u>		-21	114	114	2	4	ũ	1	-1	23	ä
5		-24	114	114	7	9	0	1	-1	28	0
5		-27	114	114	12	14	0	1	-1	33	ō
4	80	1	6	1	10	1	22	1.0			
5		16	3	б	5	18	-1	103	0	5	0
5		17	1	2	5	18	-1	103	0	5	0
5		-19	1	1	5	11	-1	113	0	. 5	1
5		-19	1	1	13	18	1	95	0	4	1
5	85	-20	1	1	1	4	G	114	1	1	0
5		-20	1	1	19	21	0	114	-1	23	0
4		1 12	3	1 6	14	1	22	1.0	•		•
5		11	7	8	5	18	-1 -1	86	0	4	0
5	90	10	9	12	5	18 18	-1	86 86	0	4	0
5444 544544 445445 444 5455 55555555555	90	1	6	1	10	1	55	1.0	U		U
4 5		5	9	10	5	1.3	-1	65	0	5	0
5		6	5	8	5	18	-1	65	0	5	o
5		-3	10	10	5	11	1	38	õ	5	1
5	95	-3	10	10	5 13	18	-1	62	Õ	4	i
5	1	-3 -3 -2 -2	10	10	1	4	a	43	1	1	0
5		-2	13	10	18	21	22	43	-1	23	0
4		1	6	1	10	1	22	1.0			

		2															
Card	Card	Col.															
Type	No.																
5		16	3	6	5	18	-1	103	0	10	0						
5	100	17	1	2	5	18	-1	103	0	10	0						
. 5		-19	1	1	5	11	-1	113	0	10	1						
5		-19	1	1	13	18	1	95	0	9	1						
5		-20	1	1	1	4	0	114	1	6	0						
5		-20	1	1	19	21	Q	114	-1	28	0						
4	105	1	3	1	14	1	22	1.0									
5		12	3	6	5	18	-1	86	0	9	0						
5		11	7	8	5	18	-1	86	0	9	0						
5		10	9	12	5	18	-1	86	8	9	0						
4		1	6	1	10	1	22	1.0									
5	110	5	9	10	5	18	-1	65	O.	10	0						
5		6	5	8	5	18	-1	65	G	10	Ũ						
5		~3 ~3	10	13	5	11	1	38	0	10	1						
5		-3	13	10	13	13	-1	62	0	9	1						
5		-2	10	10	1	Lb	9	43	1	6	0						
5	115	-2	10	10	19	21	0	43	-1	28	0						
4		. 1	6	1	10	1	5.5	1.0									
5		16	3	6	5	18	-1	103	0	15	Ū						
5		17	1	2	5	18	1	103	0	15	9						
5		-19	1	1	5	11	-1	119	0	15	1						
5	120	-19	1	1	13	18	1	95	0	14	1						
5		-20	1	1	1.	L _p	0	114	1	11	0						
5		-20	1	1	19	21	0	114	-1	33	0						
4		1	3	1	14	1	22	1.0									
5		12	3	6	5	13	-1	86	0	14	0						
5	125	11	7	8	5	18	-1	86	Q	14	J						
5		1.0	9	12	5	18	-1	86	0	14	0						
4		1	6	1	10	1	22	1.0									
5		5.	9	10	5	18	-1	65	0	15	ij						
5		8	5	3	5	18	-1	65	0	15	0						
5	130	-3	10	10	5	11	1	38	0	15	1						
5		-3	10	10	13	18	-1	62	G	14	1						
5		-2	10	10	1	L.	0	43	1	11	G						
. 5		-2	10	10	13	21	0	43	-1	33	0						
555555455554555555555555555555555555555		 0.5	0	2	0	. 1	8	3.0	3		21		7.	. 5	11		
7	135	1	1	1	1	2	2	2	2	3	3	3	4	5	5	5	5.
7		5	5	6	6	Б	7										
8		0	0	0	0	0	12	11	10	9	8	7	6	5	1	1	
8 9		0	0	G	C	C	1,2	13	14	15	16	17	21	22	22	22	

		Col.											
Card	Card	O											
Type	No.												
											5 5 6		
10	1.40	1 2	3 2	4 5 5 6 7 7 7	5 5 4 5	5 6 5	5 4 2	3 2					
11 12	140	2.5	, ,	2.5	2.5		2.5	2.5		2.5	2.5		
12		7000		7000.	7000		7000.	700	J.	7000.	7000		
12 12		0.09		0.0935	0.09	35.	0.0935	0.0		0.0935	0.09		
	145	0.03 8.	7.4	0.0374	12.	74	0.0374	0.0 14.	374	0.0374	0.63	74	
12 12 12 12 12	145	500.		67.	150.		150.	130		7. 120.	8. 600.		
12		10.		25.	25.		25.	25.		75.	10.		
12		2. 0.7		30.	16.		16.	30.		4.	10.		
12	150	0.32		0.05	0.1		0.2	4. 0.0	5	0.74	0.84		
12	130	0.		6.	0.		0.	6.		2.	0.02		
12 12 12		3.0		0.	0.0		0.0	0 .		0.	٥.		
12		0.		0.	0.		0 .	0.		0.	0.		
12 12	155	0.		0.	0.		0.	0.		0.	0 . 8 .		
12	133	0.		0.	C.		0.	0.		ũ.	0.		
13		• 3	0.		.017	1.94			.139		.417	4.3	• 5
11		0.	0.	1. 2.2	0.	2 • 2	.0093	3.08	.0181	4.0	.0275	5.0	.038
11	160	1.32		2.2	.002 .0018	3.08 3.08	.0042	4.41	.0053	4.6 4.6	.0094 .0086	5.0 5.J	.012
11	100	0.	0.	1.32		2.82	.0155	3.08	.0131	4.0	.0275	5.0	.011
**		0.	Û.	1.	G .	1.94	.0196		.0213	3.96	.0415	4.20	.045
11		0.5	0.	1.23		2.0	.0115	3.50	.0660	4.0	.037	5.0	.17
11	165	3.4	Q.	1.0	0.	2.2	.0192	3. 3.08	.03	3.5	0. .035	5. 4.	0.
11	103	0.	ú. ·	1.	0.	2.	.003	3.08	.0065		.0133	5.	.0175
11		0.	0.	1.32		2.2	.0035	3.03	.0044	4.41	.0113	5.	.015
† † † †		0 .	0.	1.	0.	2.2	0.0192	3.08	0.030	3.5	0.035	4.0	0.041
11	170	0.5	0.	1.23	0. 0.006	2.0	.0173	3.	ù. .045	4. 3.96	0. .0834	5. 5.	.15
**	170	0 .	0.	1.	C .	2.	0.	3. ,	0.	4.	0.	5.	0.
**		9.	0.	1.	0.	2.2	.00778	3.08	.0187	3.5	.024	4 .	.0305
11		0.	C.	1.32	0.	2.2	.0.14	3.08	.0038	4.41	.6083	5.	.0011
11	175	0.0	ű.	1.	0.	2.2	0.0073	3.08	0.0197	4.41 3.5	.0075 0.024	5. 4.0	0.0305
11	, 210	0.	0.	1.	0.	2.	Û.	3.	0.	4.	0.	5.	0.
		0.5	8.		.0032	1.94		3.	.024		.0445	5.	.08
11		8,. 0.	9000.		10.	2.2	5. 1.92	3.	2.	4.	1.	50.	0.
11	180	0.	90.00.		50.	2.2	21.6	3.08 3.08		6 a	0.5 2.40	50.	0.
11	100	0.	9000.	1.	50.	2.2		3.08			2.40	50.	0.
11		C.	9000.		16.	2.	5.	3.	2.	4.	1.	50.	0.
11 11		C.	9000.		5. 10.	2.2	1.92	3.08		6.	0.5	50.	0.
11	185	0.	J.	0.4	0.	1 . 94	3.33	4. 2.82	1.08	8 • 5 •	10.	50. 5.	0. 15.4
**		G.	J .	0.5	0.	2.2	2.75	3.08		4.5	6.	5.	6.3
**		0.	ů.	0.4	0.	2.2	7.67		11.61	5.	11.61	5.	11.61
11		· 0 •	0.	0.4	0.	2.2	7.67 5.43		11.61	5 •	11.61	6 *	11.61
11	190	0.2	0.	0.4	0.3		2.78	4.4	8. 5.31	5. 2.6	8.45	6. 3.9	9.00
11	-,-	18.	o.	3.2	0.		2.03	1.94		4.	3.2	5.	3.2
11		0.	0.	0.4	1.	1.94	18.18	2.82	35.6	4.	45.	5.	47.5
13		0.	٥.	0.5	0.	2.2	23.15	3.08	59.23	4.	90.	5.	98.

		51.											
Card	Card	Col.											
Type	No.	G.	0	0.4	•	2 2	37.00		_				
13	195	0.	0.	0.4	0.	2.2	37.29 37.29		. 55. · · ·	5.	55. 73.	6.	55.
***	1/3	0.	0.	0.5	G.	2.2	23.15	3.08	59.23	5.	90.	6 • 5 •	77.5 98.
11		0.2	0.	0.4	5.0	1.23	46.74	1.63	73.0		83.85		99.0
11		0.2	0.	1.23		1.94	17.06	2.92	17.89	3.96	7.03	5.0	7.19
11	200	0.5	ŭ. J.G	2.20	24.6	3.70		4 • 4 1	259.0	5.	270.0		244.8
11	200	0.4	0.0	2.2	87.2	3.7	240.0		92.0 266.8	5.4	150.0 290.J		631.6
11		0.4	0.0	2.2	0.0	3.40	70.0	4.41	150.4	5.20	186.0		168.1
11		0.5	0.0	2.2	69.8	3.00	65.0	4.41	31.1	4.90	50.0	6.61	213.2
n	205	0.2	0.0	2.2	305.1 78.7	3.84			872.4	5.32	0.008	6.61	505.3
11	205	0.0	0.0	2.2	8.5	3.40 3.5	163.0		105.2	5.46	110.0	5.51	151.8
11		0.0	0.0	0.5	0.0	2.2	25.2	3.1	34.0		35.3	6.61 6.61	0.0
"		0.0	0.0	3.4	0.0	2.2	3.7	3.3	8.5	10.41	9.8	5.61	0.0
11	210	0.0	0.0	0.4	0.0	2.2	1.1	3.3	1.8	4.41	2.0	6.61	0.0
11	210	0.0	0.0	0.4 2.2	0.0	2.2 3.6	8.4 28.5	3.0	11.0	4.41	11.9	6.61	
11		0.0	0.0	3.2	0.0	2.2	5.1	3.1	31.5 10.0	4,9	28.0 11.7	6.61 6.61	
11		0.0	9.0	0:.4	0.0	2.2	3.9	3.18		4.41		6.61	
11	21.5	0.0	0.0	0.5	0.5	2.2	0.5	4.41	1.8	5.76	4.6	6.61	
	215	0.0	0 • 0 0 • û	1.0	0.0 0.0	2.2	0.0	4.41	0.0	6.0	0.1	6.61	
11		0.0	0.0	0.5	0.0	2.2	0.0	4.41	0.6	5.40 5.56	0.1	6.61 6.61	J.J
11		0.0	0.0	0.2	1.0	2.2	1.0	3.2	3.0	4.41	8.3		13.4
11	220	0.0	0.0	0.2	0.0	2.2	3.7	2.3	3.9	4.41	3.4	6.61	1.7
11	220	0 • 0 • 5	0.	1.	0.	2.	0.	3.	0.	4.	0.	5.	0.
11		0.0	0.0	2.2	63.2 0.9	3.26 2.2	80.0 2.0	2.8	82.8 0.0	5.6	62.5	6.61	
11		0 · C	0.0	1.5	0.0	2.2	1.5	2.8	0.0	5.0 5.8	0.0	6.0 6.0	0.0
11		0.5	0.0	2,2	21.2	3.30			28.0	5.6	20.	6.51	3.1
"	225	0.20	0.0	2.2	31.6	3.90		4.41	207.1	5.0	175.C	6.61	
11		0.0	0. 0.0	1. 2.2	0. 31.2	2.	0.	3,	0.	4.	0.	5.	0.
.11		0.	0.0	1.	31.2	3.5 2.	96.0	3.	118.3	5.30 4.	100.0	6.61 5.	
11		G.	0.	1.	0.	2.	0.	3.	3.	4.	ű.	5 ,	G .
11	230	0.	0.	1.	0.	2.	0.	3.	0.	4.	G.	5.	0.
		0.	0.	1.	0 •	2.	0.	3.	0.	4.	G.	5.	0.
11 11		8.	0.	1.	0.	2.	ΰ. Ο.	3. 3.	0.	4.	û.	5.	0.
11		G .	0.	1.	9.	2.	0.	3.	0.	4.	0.	5. 5.	0.
11	235	G .	C .	1.	0.	2.	0.	3.	J.	4.	0.	5.	0.
11		8.	0.	1.	0.	2.	0.	3.	3.	4.	0.	5.	0.
**		0.	υ.	1.	O. G.	2.	9.	3.	0.	4.	0.	5.	0.
11		0.	0.	1.	û.	2.	0 •	3.	J.	4.	0.	5.	ů.
11	240	0.	0.	1.	0.	2.	0.	3.	0.	4.	0.	5. 5.	0.
**		0.	0.	1.	0 •	2.	0.	3.	0.	4.	S.	5.	0.
11		0.	6 •	1.	0.	2 .	0 •	3.	0.	4.	G .	5.	0.
11		0.	0.	1.	0.	2.	Ű•	3.	0.	4.	0 •	5.	0.
11	245	0.	0.	1.	0.	2.	û .	3.	0.	4.	0.	5.	0.
11	<u>4</u> 43	0.	0.	1.	0.	2.	0. J.	3. 3.	0.	4.	0.	5.	0.
11		0.	0.	1.	0.	2.	υ.	3.	0.	4.	0.	5. 5.	0.
11		0.	0.	1.	C .	2.	0.	3.	0.	4.	J.	5.	0.
"	250	0.	0.	1.	0.	2.	0.	3.	0.	4.	0.	5.	ū.
	250	0.	0.	1.	0.	2.	0.	3.	0.	4.	0.	5.	0.

		parel .											
C 1	C - 1	Col.											
Card Type	Card No.												
13		0.	0.	1.	0.	2.	0.	3 .	0.	4.	0 .	5.	3 •
11		0.	0.	1.	0.	2.	0.	3 3	0.	4.	0.	5 •	0.
11	255	0.	0. 0.	1.	0. 0.	2.	0.	3. 3.	0.	4.	0.	5 •	0.
11	233	G .	0.	1.	G .	2.	G .	3. 3.	J.	4 a	0.	5. 5.	0.
11		0.	0.	1.	0.	2.	G.	3.	0.	4.	0.	5.	0.
11	260	G •	J.	1.	8.	2.	0.	3.	0.	4.	0.	5.	0.
11		0 .	10.	1.	10.	2.	10.	3.	10.	4.	10.	5.	10.
		0.	13.5	1.	13.5	2.	13.5	3. 3.	13.5	4.	1.8	5.	1.8
11	265	G .	1.2	1.	1.2	2.	2.4	3. 3.	1.2	4.	1.2	5 ·	1.2
**		0.	6.6 2.4	1. 1.	6.6 2.4	2.	6.6 2.4	3. 3.	6.6 2.4	4.	6.6	5.	6.6
11	270	0 • 0 •	9000. 9000.	1.	930. 75.	1.94	51.36	3.08	326. 42.36	5. 4.4 <u>1</u>		50.	10.
11		0.	9066. 9006.	1.	750. 1000.	2. 2.	525. 700.	3. 3.	3 9 5.	4.41	265. 355.2	50.	15. 20.
11		0.	9000.0 9000.0	1. 1.0	225. 75.0	2.2	153. 51.36	3.08 3.08	123.4 42.36	4.41	87. 29.4	50.0	15. 5.0
14	275	0.	9000.	1.23	720.0	1.94	720. 5.4	2.82	720.0	4.41	720.0	50.	150.
15 16		0.25	35		0.00	0084	0.00833	530					
17 18	280		4 7.		7.		7.						
19	280		0. 1 13000.	3.		0.204		480	6.73				
20 21		8 .	0.	3.	0.		0.	0.	3113	0.	0.		0.
21 22	285		6 8.0										
23 2 3		1											
23 23 23 23		1	2 5										
23 23	290	1											
23 23 23		1	2 6										
23 23	295	1											
23 23 23 23		1	2 7										
23 23		1											
23 23 24	300	1	2 8										
24 26	303		0 0										

SECTION 5

PROGRAM OUTPUT

5.1 OUTPUT OPTIONS

The user has the capability of specifying the frequency of the output for both the cabin atmosphere and the flame spread data. Input card type 16 contains the required parameters, IPEMS and IPSPR. 'IPEMS', the print time interval for the cabin atmosphere data, is ordinarily set to correspond to every tenth pass through the program therefore, if the integration time step is one second, set 'IPEMS' = 10 seconds. 'IPSPR', the print time interval for the flame spread data, is ordinarily set to either 'IPEMS' or 3× IPEMS. The maximum flame spread rate utilized in the computer run should be considered in determining a value for 'IPSPR'.

Note - Both outputs will always be printed upon the completion of the first pass through the program, regardless of the values of 'IPEMS' and 'IPSPR'.

5.2 OUTPUT FORMATS

1. The following will appear in the upper left corner of each page of output.

TIME = XXXX SEC AFTER IGNITION

where XXXX is the number of seconds.

2. Cabin Atmosphere Summary (one page of output)

The cabin atmosphere summary consists of zone depth, gas density, gas temperature, material surface temperature, and the heat rate to the surface. These variables are printed for both the upper and lower zones.

The flow rate (in and out) through open doorways is presented along with the upward gas flow resulting from all fires in the cabin section.

The smoke concentration and toxic gas concentrations (for nine toxic gases) are presented in two forms: the

values computed assuming that all smoke and toxic gases are contained within the upper gas layer, "stratified", and values computed assuming that the smoke and toxic gases are uniformly mixed over the entire cabin section volume, "uniform mixing".

The values reported for the stratified condition should be regarded as the best estimate of the actual concentrations achieved. These values are computed by the methods described in Volume I. The uniform mixing values are computed within the output subroutine by multiplying the stratified values by the ratio of the upper zone depth to the cabin height. These values represent a possible lower limit on the concentrations which would result if the airborne materials are uniformly distributed over the entire available volume.

Two columns of information to the right of each toxic gas concentration indicate whether the concentration has exceeded a present short exposure irritation (IR) level or short exposure life danger (LD) level. A value of 1 in the appropriate column indicates that the level has been exceeded. The preset levels used are

	Irritation (ppm)	Life Danger (ppm)
СО	1.0	10,000.
HCl	35.0	1,000.
HCN	30.0	200.
HF	30.0	100.
SO_2	20.0	500.
H ₂ Š	10.0	400.
NH ₂	500.0	2,000.
$NO_{\mathbf{x}}$	25.0	200.
COC12	5.0	50.

These levels, obtained from the open literature, have been selected as <u>estimates</u> only for the purposes of exercising the computer simulation using these levels and are <u>not</u> intended to constitute a conclusion about the actual toxicological effects of these gases.

To further compare the results of various simulation runs, a rough estimate of the combined effect of the toxic gas concentrations is made by summing the ratios of each gas concentrations to the corresponding irritation or life danger levels given above. If the sum of the ratios for the irritation level exceeds one, the indication is that the

combined effect of the two or more toxic gases may cause short exposure irritation even though no single concentration exceeds its irritation level. If such a condition occurs, a "1" is printed to the right of the statement, "SE IR COMB EFF", below the report of the concentrations for each gas distribution condition. An analogous computation is done for the life danger levels and is reported as "SE LD COMB EFF". Again, it must be emphasized that these computations are for comparison purposes only and should not be used for any other purpose.

3. Flame Spread Data

The characteristics of each distinct fire are printed as they appeared prior to the flame spread calculations for this time interval. The remainder of the data represents conditions as they existed after flame spread calculations. This data includes the number of flaming and smoldering elements on each surface, and a summary by material type of the area in the flaming and smoldering states. In addition, a two dimensional diagram of each surface is included which enables the user to picture the state of each element on the surfaces involved.

SAMPLE OUTPUT: The following five (5) pages contain sample output from a simulation run in which IPEMS = IPSPR = 10 seconds. This output resulted from the sample input data presented in Section 4.2.

TIME= 40 SEC AFTER IGNITION

CABIN ATMOSPHERE SUMMARY

2 F			UNIFOFM MI UNIFOFM MI CONCENTRATIO .34741E+02 .19132E+01 .78431E+00 0 .39216E+01 0
HEAT RATE TO SÜRF (BTU/SQ FT-SEC)	.112		TOXIC GAS CONCENTRATION STRATIFIED CONCENTSATION IR LD CONCENTSATION IR LD CONCENT A4251E+01 0 0 1913 18372E+01 1 0 7843 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MATL SURF TEMP (DEG F)	75.5	UFWD GAS FLOW,ALL FIRES (LBM/SEC) 12.666	GAS CONCE CO .8 HCL .4 HCN .1 HF 0. SO2 .9 H2S 0. NH3 0. NO(X).0
GAS TEMP (DEG F)	240.8	UPWD GAS F	
GAS DENSITY (LBM/CU FT)	.0628 .0630		NTRATION ENSITY) UNIFORH MIXING • 014
ZONE DEPTH (FT)	3.459	TOTAL FLOW RATE THRU VENTS (LBM/SEC) 9.741 9.651	STRATIFIED UNIFORM W.033
STRATIFIED GAS HODEL	UPPER ZONE LOWER ZONE	NI	

SE IR COMB EFF 1 SE LD COMB EFF 0

SE IR COMB EFF 1 SE LD COMB EFF 0

TIME= 40 SEC AFTER IGNITION

	4 FLOOR(FT) FLAME HEIGHT(FT) FIRE BASE AREA(SQ FT) BASE FADIUS, FLAME VOL(FT) 7.02 4.00 1.00 3.37 4.00 .40 2.13 2.00 .50
	FIRE BASE AREA(SQ FT) 4.00 4.00 1.25 2.00
ICNS) FLAME HEIGHT (FT) 7.02 3.37 2.18 2.75
DISTINCT FIRES AT START OF FLAME SPREAD CALCULATICNS	DIST-FIRE BASE FROM FLOOR(FT) 6.00 0.00 1.00 1.00
SATS	ZONE LWR LWR LWR
DISTINCT FIRE	FIRE NC 2 3 2 4 4

TIME= 40 SEC AFTER IGNITION

ELEMENT STATE SUMMARY - CONDITIONS ON ALL SURFACES AT END OF FLAME SPREAD CALCULATIONS

	PSU	O				
9 0 0 0	SIDE BOTT-	0				
RIGHT SIDEWALL LOWER-REVEALS-UPPER 0 0 0	CEILING,RIGHT SIDE PANELS-SB FACE-SB BOTT-PSU 0 0 0	0				
RIGHT OWER-R 0	CEIL ANELS-	0	RGT 0	O		
٦			3RD ROW I CIR	0		
	FACE, RG	0	3RD RG LEFT CTR 0 0	0		SEATS 3.25 0.00
	IER 3 BOTT-SB 0	0				L PANEL 0.00 0.00
FL00R 32 0	G, CENT	0	RGT 0	Ü		A CEIL
7	CEILING, CENTER -SB BOTT-PSU-SB BO 0 0	0	ZND ROW CTR	0		STOW BIN CEIL PANEL 0.00 0.00 0.00
	CEILING, CENTER SB FACE, LFT-SB BOTT-PSU-SB BOTT-SB FACE, RGT 0 0 0 0	0	LEFT	0	SG FT)	PSU 0.00 0.00
		0			AL TYPE (SO FT	REVEALS 0.00 0.00
W 00	SIDE CE PAN		× RGT	0	BY MATERIAL	
LEFT SICEWALL UPPER-REVEALS-LOWER 0 0 0	CEILING, LEFT SIDE PSU-SB 9CTT-SB FACE PANELS 0 0 0	0	1ST ROW LEFT CTR 5 0	C	AQEAS BY	SIDEWALL 3.00 0.60
FT SICE R-REVE/	CEILII SB 9CT	0	– ir ic	0	ING AQ	CARPET 8.00 0.00
UPPE	PSU-0	0			MOLDER	CA
TLANE	FL AME	4L CRG	o S FLAME	MLCRG	FLAMING AND SMOLDERING	FLAME
ELEM AFLAME	ELEM AFLAME	NO ELEM SMLDRG	SEAT GROUPS NO ELEM AFLAME	ELEM SMLORG	LAMIR	AREA AFLAME AREA SMLDRG
0 N	NO Pi	NO N	A SEAT GROUPS NO ELEM AFL	NO H	L	ৰ ব

40 SEC AFTER IGNITION TIME=

DISTRIBUTION OF FLAMING(F), SMOLDERING(S), AND CHARRED(C) ELEMENTS AT END OF FLAME SPREAD CALGULATIONS

×	*	× CC	98 C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C C C C B C
^		RIGHT	
		× ×	
REAR	FRONT	MIODLE	
FLOOR FIRES X	X X MOS STATE		U. U. U.

```
TIME= 40 SEC AFTER IGNITION

SEAT GROUP, ROW 2

X LEFT X X MIDDLE X X RIGHT
```

SECTION 6

PROGRAM STATISTICS

The following program data pertains to runs made on the Control Data 6600 Computer System installed at Area B, Wright-Patterson Air Force Base, Dayton, Ohio (Building 676).

Programming Language: FORTRAN IV

Operating System: NOS/BE

Computer Storage Required: 120,000 words (octal)

Compile Time (CPU seconds): 18 seconds

Execution Time (for sample input 360 seconds

run to 730 sec. simulated time):

Number of Cards, Program Source: approx. 3000

Number of Cards, Input: approx. 150

SECTION 7

PROGRAM AVAILABILITY

Because of the length of the code of the DACFIR program, a listing of the code has not been included in this volume. Copies of the program code and sample input data may be obtained from any of the organizations listed below.

University of Dayton Research Institute Applied Systems Analysis Section Attn: Mr. C.D. MacArthur 300 College Park Dayton, Ohio 45469 (513) 229-3921

Department of Transportation
Federal Aviation Administration
Cabin Fire Safety Research & Development Program
Attn: Mr. C.C. Troha ARD 520
Trans Point Building
2100 Second Street, S. W., Room 1400
Washington, D.C. 20591
(202) 426-8416

Department of Transportation Federal Aviation Administration Aeronautical Center P.O. Box 25082 Attn: Mr. James Gillespie AAC210 Oklahoma City, Oklahoma 73125 (405) 686-4374